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1. Early Recognition Experiments

At the beginning phase of the project, we carried out a series of experiments on recognition
using conventional techniques including K-L decomposition (eigenimage approach) and
simple template matching. We also tested configuration-independent techniques with
target dimensions. These results were intended for the understanding of synthetic aperture
radar automatic target recognition (SAR ATR) and for comparisons.

A set of 200 chips for each of the 3 targets (BTR70. BMP2. and T72) are used in the
experiments. The chips are sorted by target azimuth: odd chips are used for training and
even chips are used for testing. The peak detection module and the segmentation module
described in [1] are applied to the 600 chips to obtain 20 by 40 subimages or regions of
interest (ROI) containing the targets. For chips that the segmentation module fails to find
the ROI, we segment the chip manually. For each ROl we also extract a 4 by 40 subimage
that contains only the longer leading surface (LLS). LLS is defined as the longer side of the
vehicle facing the radar. See Figure 1.

extract LLE

B Talh, R

Figure 1: ROI and LLS Subimages Extracted from a Chip for Training and Testing

In the experiment using K-L decomposition, a covariance matrix is computed from the
training images. The 10 eigenvectors of the matrix with the largest eigenvalues constitute
the feature space axes. When a test image is presented to the classifier, the estimated
target azimuth, c, is used to select K training images (from each target class) that have
the closest azimuth to « to construct a template. Also, K training images (from each
target class) that have the closest azimuth to « & 180° are selected to construct an 180°
alternative template. In other words, there are 2N candidate templates for every test
image to compare with. where N is the number of candidate target classes. In the
preliminary result presented below, we use K =3 and N = 3.

To classify a test image, the test image and the 2N templates are projected onto the
feature space and the template that has the smallest Euclidean distance to the test image
determines the class tag and the pose of the test image. In addition to using the whole
ROI to train and test the classifier, we also use the LLS subimages for training and testing.
The reason for using LLS subimages is that they are likely t0 be configuration independent.
Confusion matrices are shown in Table 1 and Table 2. Note that our experiment differs
from other similar experiments [2] in two aspects. First, we use segmented ROls. And
second, we dynamically construct azimuth-dependent templates for classification.
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Azimuth-dependent templates can account for the great variability of SAR imagery and,
therefore, improve recognition rate.

Table 1: Recognition Using ROIs

i BTR70 | BMP2 | T72 | Other !
BTR70] 84 2 | 2 | 12
BMP2 1179 7 13
lT?Q T 7 |69 23 :

Table 2: Recognition Using LLS

] BTR70 | BMP2 | T72 | Other |

BTR70| 69 ¢ | 9 | 16
BMP2 | 9 | 65 | 15 | 11 |
™72 5 | 12 | 69| 14 |

Recognition based on cross correlation shows comparable results as K-L-based recognition
(Table 3). As in the case of K-L-based recognition. each test image will have six templates
to compare with. For each template we use leading surfaces and peaks to find possible
alignment of the test image and the template as in Section . The alignment that gives the
best, cross correlation will be the score of the template. and the template with the highest
score determines class tag and pose of the test target. Cross correlation of two images, f
and g, is computed using the following expression:

Em,n(fm,n - —f) . (gm.n - g) .

0f-0g

Cross correlation =

Table 3: Recognition Using Cross Correlation

B BTR70 | BMP2 | T72 [ Other |
BTR70| 80 | 2 | 5 | 13 |
BMP2 0 | 73 | 13| 14
T72 0 ' 4 |8 | 8

Observed length and width of a ROI can also be used for recognition, assuming no or little
occlusion. For most target classes, recognition using length and width is independent of
configuration changes on the deck of a target. We construct from the training images
piecewise linear functions to approximate the length and width of a target as target
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azimuth varies. An example is shown in Figure 2. The product of Gaussian likelihoods is
used as a score for classification. In expression (2), {, and w, are the observed length and
width of the ROI, respectively; I; , and w;, are the stored length and width of the ith

target class at azimuth = a. Table 4 shows the confusion matrix of our experiment. Note

that o = 1 pixel is used.

Likelihood

= p(i(", w(l l li.a-. wi,a)

l [ . 1] “0—11‘,91? 1 _(wo—w‘-‘a)? 5
= i) PlWo | Wia) = —fz=— 27 o=t 20°
pllo | lia) Plws | Wia) 5 Nor® 7 (2)

astimated langth pixots)

« 5L 100 150 20¢ 25¢ 30 35
vehicte onentation (degreses)

Figure 2: A Piecewise Linear Function Constructed from the Training Images to Approxi-
mate the Length of the BTR70 at Different Azimuth

Table 4: Recognition Using Length and Width

[ BTR70 | BMP2 | T72
BTR70 | 77 19 | 3
BMPZ | 7 89 | 15
T2 | 5 22 | 80




2. Structural Model-Based Recognition Approach

Statistical classification, view-based recognition, and model-based recognition are the
techniques commonly seen in the computer vision literature. A structural model-based
approach is adopted in this research effort.

Because of the great variability of SAR imagery. orientation-dependent templates o1
nodels are often used for recognition. regardless of which technique is adopted. Section
describes how a orientation-dependent model is selected in our approach.

Statistical classification is computationally tractable. However, our early experiments with
statistical classification (K-L decomposition; eigenimage approach) [2] achieved only about
an 80 percent success rate in recognition.

The view-based approach matches the input image 1o every possible view of all target
classes. It has two fundamental limitations: 1) It Jacks a good indexing capability that
selects a few candidate target classes from the entire database for matching, and 2) It is
computationally prohibitive 1o maintain a set of views that covers a target under the
extended operating conditions (EOCs). Take the T72 tank, for example. With the hatch
open or not, oil tanks or not will result in different images [3]. In other words, recognition
with the view-based approach becomes a combinatorial problem.

There are a few traits of a model-based recognition system including low level (image level)
feature detection/extraction, generic hypothesis generation, indexing at various levels of
the system, and matching. It is tractable and intuitive to humans to integrate a probability
framework, known as Bayesian network, to a model-based system to make decisions at
various levels (e.g., image level, component level, and object level) of the system.

2.1 Generic Vehicle Model

We adopt a generic vehicle model unique in the ATR community to define parameters of
length, width, and orientation to use in recognition. Observing that most ground vehicles
of interest have a rectangular chassis, it is natural to fit a rectangular bounding box to a
set of image features to estimate a pair of leading surfaces that in turn give the estimated
Jength, width, and orientation. The rectangular bounding box model can be extended to
include articulating parts that accommodate features extruding outside of the box, such as
a gun or antenna.

The estimated leading surfaces provide a coordinate frame (called target coordinate frame)
local to the target. With the strong assumption that amplitudes, and relative positions of
enough peaks (bright points) in the image are quasi-invariant for a small range of target
orientation (with respect to the radar) and variations in radar viewing parameters, target
coordinate frames can be used to align images for matching individual image features.
Typically, 10 to 15 peaks that persist for about 3 to 5 degrees is a sufficient, condition for

4
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Figure 3: Generic Vehicle Model (Top View)

the quasi-invariance assumption; this condition is verified in this report (Section ).

2.2 System Overview

Figure 4 gives an overview of our SAR ATR system. The system has two phases — the
hypothesis generation phase that selects a few candidate target classes from the target
database, and the hypothesis verification phase that outputs the best class and pose for the
test image.

The hypothesis generation phase starts with estimating low-level image features (e.g.,
peaks), finding clusters of peaks that correspond to a target area. The generic vehicle
model is fitted to the target peaks to get target length, width, and orientation estimates.
Target peaks and the estimated parameters are used in target indexing.

The hypothesis verification phase aligns candidate class images to the test image, and this
process is sped up with the help of the Delaunay walk algorithm. The Evaluation module
selects the best class and pose for the test image.




System Overview

Testimage — . Class and pose

Generation |

Generation phase: Verification phase:
» L ow-evel feature estimation. = Image alignment.
e.g., peaks and edgels find feature correspondences
» Segmentation/ Extended * Delaunay walk.
feature estimation. speed up image alignment
e.g., find clusters of target peaks » Hypothesis evaluation.
» Generic model estimation. select the best match from
length, width, and orientation candidates

» Target indexing.
compute candidates

Figure 4: System Overview




3. Persistent Scattering

Because of the great variability, doing recognition with SAR image features, such as peaks
(bright points) was once considered impossible. In recent years, researchers have
demonstrated that peaks that are persistent over a few degrees of the target orientation
(Figure 5) with respect to the radar are sufficient for recognition.

Nadir Track
A

Target

Figure 5: Target Orientation (Top View)

Persistent scattering of inverse SAR (ISAR) and synthesized SAR (XPATCH) imagery
were studied by Dudgeon et al. [4] and Binford et al. [5] respectively. In this report, we
study persistence of the MSTAR (Moving and Stationary Target Acquisition and
Recognition) imagery. The results give evidence that there are enough scatterers with
sufficient persistence for structural model-based recognition.

We study persistent scatterers in a set of MSTAR images of three different vehicles
(BTR70, BMP2, and T72). The evaluation of persistent scattering was done in three ways:
by human observers, by an interactive user interface and a human operator, and by an
automated program. A user interface or an automated program is needed because we do
not have the ground truth for registering images as in the case of synthesized SAR or ISAR
imagery.

Images of targets were examined and compared to the miniature vehicle models we
assembled to determine the salient scatterers and the azimuth intervals over which they are
visible. For example, one of the BTR70 hatches is visible over the azimuth intervals: 0 to
15, 35 to 50, 85 to 110, and 150 to 175 degrees.

3.1 Peak Detection

Image peaks (bright points) are the primary low-level image features used in our current
SAR ATR system. Peaks on the target area are strong radar returns from scatterers on the
targets. Corner reflectors, dihedrals, and planes are commonly seen simple scatterers.
Different scatterers have different stability; for example, a corner reflector is more stable
than a plane scatterer in that energy is more likely to be reflected back from a corner
reflector.

-~




Figure 6: Detected Peaks

R

Figure 7: Left: Superposition of Rotated Peaks; Right: Superposition of Rotated Intensity
Images

A generic peak detector by Wang and Binford [1] is used to detect image peaks. Figure 6
shows an example of detected peaks overlaid on the original intensity image. Peaks belong
to targets are segmented (selected) before persistent scattering is studied.

3.2 Peak Persistence

The peak detector [1] was applied to an image to extract peaks (bright points) in the
image. The set of peaks were then rotated to zero azimuth angle and an interactive user
interface was subsequently used to register them to a set of reference peaks. This process
was repeated for images with target azimuth between 45 and 135 degrees. Figure 7 shows
the superposition of the rotated peaks and intensity images of the BTR70.

To automate the registration process, we developed a method based on leading surfaces
and ideogram. We use leading surfaces to establish local coordinate frames for the two sets
of peaks being registered. We can use a pair of peaks, one peak from each frame, that have
the same local coordinates for registration (Figure 8(a)). However, some peaks may not
have the corresponding peaks in the other frame due to the great variability of SAR
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imagery. Therefore, we chose to generate correspondence hypotheses for the 2 frames using
the 10 brightest peaks and select hypothesis with largest overlap, where overlap is
measured by ideogram (Figure 8(b)). The ideogram counts the number of matched peak
pairs and is expressed as follows:

d?
1

Ideogram = Z e 27 (3)

[o] oc

*ee®® g0 — —<

1thyé

0 s

{b}

Figure 8: (a) Local Coordinate Frames Used to Establish Correspondence of Peaks; (b)
Ideogram Associated with the ith Peak Pair

Since we have established the correspondence of peaks from one frame to the next, we can
generate plots of average number of peaks per frame versus minimum persistence (in
degrees) and plots of number of peaks that persist for more than 1, 10, or 20 degrees versus
target azimuth (Figure 9). These kinds of plots were introduced by Dudgeon et al. [4] for
evaluating persistent scattering in ISAR imagery. The plots show that on the average there
are 10 peaks that will persist for more than 15 degrees.

Existence of persistent scattering is the basis for structural model-based target recognition
with SAR imagery. Matching of individual scatterers (target features) enables recognition
under articulation, obscuration, and configuration changes of targets.

With enhanced image alignment technique, we have improved the ability of our automatic
programs to better tracking of target scatters across image frames. Figure 10 (a) shows the
superposition of two aligned peak images. Figure 10 (b) shows the superposition of 21 peak
images, all registered to the 11th peak image. Note that the effect of range foreshortening
is corrected and all of the peak images are rotated to zero azimuth.

We use a set of 231 BTR70 images in our study of persistent scattering with automated
programs. The result shows that on the average there are 10 peaks that persist for more

9
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Figure 10: Alignment of Peak Images

than 15 consecutive degrees. This characterization underestimates somewhat the
persistence of scatterers that are obscured at some angles and then reappear. Nevertheless,
it gives evidence that there are enough scatterers with sufficient persistence for structural
model-based recognition.
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Figure 11: Amplitude Variation of Peaks

We also studied the variation of peak amplitude as a function of azimuth angle (Figure 11).
The preliminary result shows that it may be possible to classify target peaks into a handful
of categories. Knowing the category of a peak allows us to relate it back to the physical
component of the target that reflected the radar energy. Also, statistics of appearance of
each peak category can be collected for a given target from the training imagery.
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4. Target Segmentation

We use MSTAR target chips for the development and testing of our ATR algorithms. We
segment, out targets before performing estimation of parameters (such as length, width,
and orientation) of a generic vehicle model.

The segmentation module is a reimplementation of the segmentation technique developed
by Wang and Binford [1] for SAR imagery. The technique involves peak detection, peak
selection, Delaunay triangulation. and breaking long links in the triangulations. Failures of
peak detection and target segmentation were analyzed. Plans have been made for
improving performance.

The peak detector developed by Wang and Binford is used to estimate position, amplitude,
and widths of strong radar returns in the input image. Thresholds for peak amplitude are
set to select strong peaks possibly corresponding to target scatterers since amplitude of the
returned radar signal is probably the best quantity for discriminating targets against
clutter. The Delaunay triangulation of the strong peaks is computed. Long links in the
triangulation are broken to segment out target areas because the density of strong peaks
are low in the nontarget area.

12
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Figure 12: Segmentation

Figure 12 (a) shows the input intensity image of a BTR70. The peak detector [1] is applied
to extract peaks (bright points) in the image. Figure 12 (b) shows the Delaunay
triangulation of strong peaks with amplitude greater than 2.0. These peaks correspond to
the class of target scatterers. After breaking long links (> 10 pixels) in the Delaunay
triangulation, a few groups of connected strong peaks are formed. These groups can be
further examined and ranked using the prior knowledge of average peak amplitude and
target sizes. Otlier types of objects can be segmented in the same way. For example,
Figure 12 (c) shows the Delaunay triangulation of the weak peaks that possibly correspond

13




to shadows. Figure 12 (d) demonstrates segmented target and shadow areas.
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5. Higher Order Features

To go beyond using point features (e.g., image peaks) for indexing and matching, higher
order features such as pairs of peaks, line features. and boundaries can be used. This
section summarizes our preliminary results on finding line features and shadow boundaries.
Line features are observable in almost all ground targets. for example, the leading surfaces,
the gun of a T72, and the shadow of the gun. Shadow boundaries contain information not
available from the target area. for example. the height of the target, and the aim angle of
the gun. A more detailed analysis should also take into account the effect of lavover.

The Binford-Chiang edge operator is first applied 1o extract edgels (edge elements) and
these edgels are linked into higher order features. Delaunay triangulation is used as a
means of spatial indexing that establishes a neighborhood for each edgel: in other words,
the neighboring edgels in the Delaunay triangulation are candidates for linking.

5.1 Line Features

Figure 13 shows a T72 image. Figures 14(a) and 14(b) show the detected delta edgels and
step edgels, respectively. The example here focuses on linking step edgels.

First, edgels are detected using the Binford-Chiang edge operator. To link the edgels,
direct neighbors in the Delaunay triangulation (Figure 14(c)) are used as candidates. The
best candidate is selected based on a probability measure. and this process is continued
until the probability is smaller than a predetermined threshold. Figure 14(d) shows the line
features with at least two step edgels. As can be seen, step edges that correspond to the
gun, shadow of the gun. and part of the leading surfaces are good line features.

Figure 13: T72 Image
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(c) Delaunay triangulation of step edgels

(d) Line features

Figure 14: Finding Line Features

To assess the goodness of fit, the line defined by the first edgel and the last edgel is used as
a reference Jine. The deviation of the tangent of each edgel from the reference line is
modeled by a normal distribution with zero mean, and standard deviation ¢. In other
words, t; ~ N(0,0) (Figure 15). To allow more expected variation with a larger number of
edgels on the line, Chi-square distribution is used to evaluate the overall goodness of fit of
the edgels to the line. 7, (%)% ~ x* with degrees of freedom = n. Other edgel features
such as amplitude (intensity), contrast, and curvature can be incorporated to improve

decision.




Figure 15: Probability Model
5.2 Shadow Boundaries

A maximum likelihood decision method by Oliver et al. [6] is adopted to select candidate
edgels that are likely to be on the shadow-background boundaries from the detected step
edgels. Then, a hierarchical linking strategy is used to link the candidate edgels into a
boundary curve. Delaunay triangulation is used as a means for searching and optimization
in linking edgels.

5.2.1 Likelihoods

The method by Oliver et al. [6] uses the ML decision procedure to select one of the two
hypotheses: {one distribution, two distributions}. In other words, the pixels on both sides
of the edgel have the same or different distribution.

Gamma distribution for L-look SAR: Pr(I) = (%)L]L“I—]«—e"T

d
In our case (one-look): Pr(I) = %e_ﬂ, where p is mean of the distribution.

Take n pixels from each side of the edgel and compute the likelihood of the two hypotheses:

e Two distributions (two distributions characterized by pl and p2):

n 1 __1_1'_ n
Pr(ul, pu2 | data) ~ || —e7 5 - || —ze 2 4
( et 1 (@

The log-likelihood for two distributions is as follows:

A (p1, p2) ~ —n[ln(pl) + ;% +In(p2) + %] (5)

_ 1 n — 1 ¥
where Iy = > 30, 1, b = 3 X0 5

e One distribution (characterized by pl):

2n )
Pr(ul | data) ~ [ L]e_flf? (6)

i=1




The log-likelihood for one distribution is as follows:

an~4wmm+%: G

where I, = & Y2, I,

2n
5.2.2 Computing A? and A

Oliver et al. [6] use 1, and I, as approximations for ul and p2. Although they seem to be
reasonable approximations. the resulting ML decision rule have very little discriminating

power. The approximations favor the one-distribution hypothesis and becomes ineffective

with Jow SNR typical of SAR images: in our case, SNR = —S=N_ ~ 1, where ‘S’ =

\/ag—(-(f—f\-_

background and ‘N’ = shadow.

In our implementation, p1 and p2 from precollected statistics are used, and we compare
the following two quantities to determine which hypothesis is more likely:

A? = maz(N2 (L, p2), N (u2, 1)) (®)
A = maz(\ (1), X (42)) (9)

e hypothesis = one distribution, if A* > A2,

e hypothesis = two distributions, if A% > A™.

It is noted that Oliver et al. [6] find edgel location/orientation by maximizing A® while we
use Binford-Chiang edgel operator for edgel detection.

5.2.3 Hierarchical Linking

Two Delaunay triangulations are used in the linking process (Figure 17): DT, Delaunay
triangulation of all edgels. and DT®, Delaunay triangulation of shadow-background
boundary edgels (selected using ML decision).

In the first linking stage. shadow-background boundary edgels that are direct neighbors in
DTe are connected to form edgel chains. In the second linking stage, end points of edgel
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Figure 16: Shadow-Background Boundary Edgels
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(a) DT* (b) DT"
Figure 17: Delaunay Triangulations

chains that are direct neighbors in DT? can be linked to form a boundary curve. Figure 18
shows the results of stage #1 and stage #2 linking.

Figure 19 shows a detailed example of linking edgel chains. There are three direct
neighbors for the edgel p in DT® (Figure 19(a)). The Delaunay walk in DT* is used to find
initial paths from p to the three neighbors in DT?. These initial paths can be optimized
with respect to contrast or a probability quantity to get the paths shown in Figure 19(b),
and the best path can be selected using, for example, contrast.
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Figure 18: Hierarchical Linking
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Figure 19: Hierarchical Linking
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6. Leading Surface Estimation

We define leading surfaces to be the sides of the vehicle that face the radar. The LLS
usually corresponds to one of the two sides of the target and the shorter leading surface
(SLS) corresponds to either the front or the end of the target. Figure 20 shows a top view
illustration. The LLS determines target azimuth up to a 180-degree flip. The role of LLS
and SLS may be changed in the case of occlusion because the sides may appear shorter
than the end (or the front).

Leading surfaces can be used in several subsystems in our ATR framework. Also, they can
be used to reduce computational cost and/or improve recognition rate in different
recognition subsystems, e.g.. statistical classification. template-based, and model-based.

longer leading edge

target SAR

shorte:r; leading edge

Figure 20: Leading Surfaces, the Sides of the Vehicle Facing the Radar

6.1 March 1998

We combine amplitude-weighted ideogram and a probability-like weighting strategy to find
the best leading surface (Figure 21 (a)) as shown in expression (10). Amplitude-weighted
ideogram finds surfaces with multiple peaks close to them, and probability-like weighting
rejects surfaces that run across the body of the target. Figure 21 (b) shows examples of
good and false leading surfaces.

4 A, _a?
SAewr) [ 1 - (10)
i i:d; >0 maex
amplitude—weighted ideogram probability—like weighting

The initial result of our leading surface estimator exhibited a sinusoidal bias, as shown in
Figure 22. There are two causes of this sinusoidal bias; the first cause is inherent from the
estimation algorithm, and the second one comes from SAR imaging geometry.
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Figure 21: (a) Example of a Leading Surface and Ideogram. and (b) Examples of Leading
Surfaces
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Figure 22: Sinusoidal Estimation Bias

Because we only tried to estimate the LLS, peaks on the SLS will pull the estimated LLS
toward the SLS, as shown in Figure 23. Our solution is to estimate the two leading
surfaces, LLS and SLS, together. Peaks are assigned to either the LLS or the SLS before
we compute ideogram.

Since SAR images are the projection of targets onto the slant plane, the dimension in the
range direction will be foreshortened by a factor of cos¢, as shown in Figure 24. As a
result, the angle of an surface will be increased or decreased slightly. To remedy this
problem, simple geometric correction is applied to compensate for the foreshortening before
leading surface estimation is performed.

Table 5 summarizes the current state of performance of our target azimuth estimation
using leading surfaces. We characterize the performance using two numbers; error
probability, P, is the number of estimation mistakes normalized by the total number of
estimations, and the root-mean-square, RMS, error measures the fluctuation of the correct
estimations. We define an estimation with an error less than 10 degrees to be correct. The
average RMS error is less than 3 degrees, which is slightly better than human observers.
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Figure 23: True Leading Surfaces (Dashed Lines) and Estimated Leading Surfaces (Solid

Lines)
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Figure 24: (a) SAR Imaging Geometry and Foreshortening (Side View), and (b) LLS angle

before and after Projection

Tab

6.2 November 1998

e 5: Performance of LS Estimation
RMS error | P,
BTR70 2.5¢ 3/168
BMP2 2.8° 2/231
| T72 3.0° 4/203

We have made progress in leading surface estimation. Table 6 shows our previous result on
leading surface estimation, and Table 7 shows the new result.

The progress is a result of a few algorithmic improvements. First, LLS hypotheses with
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Table 6: Performance of LS Estimation

RMS error P,
BTR70 2.47° 8/233 ~ 3.43%
BMP2 2.79¢ 5/231 =~ 2.16%
T72 3.10¢ 7/231 ~ 3.29%

Table 7: Performance of LS Estimation

| RMS error . P,
BTR70 2.20° 2/233 ~ 0.86%
BMP2 2.66¢ 1/231 ~ 0.43%
T72 3.28° 6/231 ~ 2.60% |
1 !
gso 'g?sc,, -
g @ : ‘o zfg :
b L _
o % 00 w'g‘sﬁ.z.m(ﬁm) 2 w T b Fe o0 m:;ﬁmum:ﬁ”) 2% o
(a) previous result (b) new result

Figure 25: Orientation Estimation Errors of a BTR70

longer length are emphasized because they are less sensitive to peak position fluctuations
(note that LLS hypotheses are generated from peaks). Second, the relation between
projected length and width (i.e., length > width) is used to eliminate most 90-degree
estimation errors (Figure 25). Third, we use a true probability instead of a probability-like
weighting for leading surfaces; i.e., we use the following metric to rank leading surface
hypotheses:

( 11 [1 — PrY;- Pr‘ﬂ) . (Z Aie‘;%) (11)

7:d; >0

probability ideogram




where Pr!; = Pr(the ith peak is a target peak) and Pr% = Pr(the ith peak is outside the
leading surface).

6.3 June 1999

The following equation yields a probability measure for leading:

Pr(leading edge)

~ 11 |1 — Pr(ith peak is a target peak) - Pr(ith peak is outside)] (12)

outside peaks

where:
Pr(ith peak is a target peak) = [ Rayleigh dz; 1 as a; 1
2

n;

Pr(ith peak is outside) = [ —\/—%;e“%f dz; T asn; 1

Compensate according to the number of peaks outside: [Pr(leading edge)] Fowtolde poaks

6.4 Alternative Leading Surface Hypotheses

Leading surfaces define a rectangular box which gives target length, width, and orientation
estimates independent of target class. In our previous results (Table 8), orientation
estimation errors greater than 10 degrees are encountered 1.3 percent of the time (i.e., P
= 1.3 percent) and the RMS error of the correct estimations is less than 3 degrees (i.e.,
slightly superhuman). In order to address this 1.3 percent estimation error, we generate
alternative leading surface hypotheses by dropping peaks on the front convex hull of the
target peaks, where the front convex hull is the half convex hull facing the radar.

Table 8: Performance Achieved by Selecting Single Hypotheses
RMS error | P,

BTRT70 2.20° 2/233 =~ 0.86%

BMP2 2.66° 1/231 =~ 0.43%

| T72 3.28°  16/231~2.60%

Figure 26(b) shows the leading surface hypotheses generated from the front convex hull
shown in Figure 26(a). Because the front convex hull can be inaccurate due to nontarget
peaks outside the leading surfaces (at least one nontarget peak will be encountered 20

25




{b) Hypotheses

(c) Front Convex Hull (d) Hypotheses

Figure 26: Alternative Leading Surface Hypotheses

percent of the time), peaks on the front convex hull are dropped to get a new front convex
hull and a new set of leading surface hypotheses, as shown in Figure 26(c) and (d),
respectively. Linear extension of pairs of peaks (from the front convex hull) in the
Delaunay triangulation of all target peaks are used as leading surface hypotheses. Notice
that peaks dropped are still used for the evaluation of leading surface hypotheses. Also, by
using leading surface hypotheses generated from the front convex hulls, a 10 to 1 reduction
in hypotheses number (compared to using all pairs of peaks) is achieved.
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7. Target Indexing

The target indexing module selects from the target database a few candidate classes for
matching; in other words, exhaustive matching is avoided with target indexing. There are
two important requirements that the target indexing module must satisfy. First, the
candidates must include the correct target classes. Second, this indexing step must be
quick.

7.1 The Target Database

Each target class has 100 images in the target database: these images span the 360 degrees
evenly. Peak detection, segmentation, and leading surface estimation are applied to each
database image to obtain image features and parameters.

All of the database images have an 17 degrees depression angle. For each target azimuth
(orientation), a pointer table is created for all target classes. Pointer tables are explained
next.

BTR70: coo
T72: ooe
H e 4 :
POInter I coe (=113 [=1c]s]
tables: :

Figure 27: Target Database

7.2 Target Indexing

Pointer tables are used for target indexing. Each entry in a pointer table contains a list of
pointers pointing to peaks of target classes. For example, the shaded cell in Figure 28(a)
has a pointer to peak 20 of the class BTR70 with a score of 0.95. Also, it has another
pointer to peak 17 of the class T72 with a score of 0.90. The score can be a probability
quantity.




When an unknown target is encountered, the table entries hit by the peaks of the unknown
target are used for sorting out candidate target classes quickly (Figure 28(b)). For
example, the total score for the BTR70 class can be computed by summing all of the scores
over all table entries hit by the unknown target. The same procedure is used for other
target classes. This step is quick because it involves only a table lookup and addition of
scores. More importantly. the indexing procedure uses positive evidence for finding
candidate classes. This can be useful under the EOCs.

It is worth pointing out that the axes used here are the leading surfaces from the generic
vehicle model. Also, higher order target features may be used to help the discrimination of
true target classes against false target classes.

Figure 29 illustrates the entire indexing process. With the azimuth (orientation)
information from the ecstimated generic vehicle model, the pointer table with the closest
azimuth is selected. And a few candidate target classes are found with the pointer table.
Azimuth-dependent pointer tables are necessary to address the high variability of SAR
imagery.
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Figure 28: Target Indexing
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8. Image Alignment

Image alignment is essential in our study of persistent scattering. Also, template images
and the input test image must be aligned for recognition. We seek the best rigid body
transformation between the input test image and a given template image such that a
preselected metric is optimized. Affine transformation is overly general for the application
(e.g., it allows shearing of images) and is therefore not used. The alignment procedure has
two steps. First, peaks are used to generate initial alignment hypotheses; the hypotheses
are ranked by their values of the preselected metric. Second, we refine the best or the first
few best initial alignment hypotheses by an analvtical formulation. Both hypothesis
generation and the analytical formulation aim at efficient image alignment.

8.1 Initial Alignment

Let Sy = {(ug, uy, Au)} and Sy = {(vz, vy, A,)} be the set of template image peaks and
test image peaks respectively. Notice that each peak is characterized by its position and

amplitude. We seek a rigid body transformation (7p) that optimizes a preselected metric
d?

(Equation (13)). For aligning peak images, we use J = 3;(Ay; + Ayi)e 22 or
2

a7
v _AuitAn 3 o
I=3%; Ti[Am—Ag € 2 s where o ~ 1 pixel is used.

TO = ArgMamT I(Sy, Sv, T)
= ArgMazs I(Sy,Sy) (13)

where

(ol e b 04

Initial alignment gives an initial guess of the parameters a and b, i.e., the x- and
v-translations. Since the target orientation of the template image is known and the target
orientation of the input test image can be estimated {rom the leading surfaces, the
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Figure 30: Alignment Hypothesis Generation

template image can be rotated such that the two images have the same target orientation,
and the best initial guess of § is zero.

The two leading surfaces together form an intrinsic target coordinate frame that provides
quasi-invariant peak coordinates under radar viewing parameter variations. Ideally, two
peaks, one from each of the two images being aligned, that have roughly the same
coordinates are sufficient for the alignment task. However, some peaks may not have the
corresponding peaks due to the great variability of SAR imagery (Figure 30) or false
segmentation. Therefore, we choose to generate alignment hypotheses using the five
strongest peaks from the input test image and select the best hypotheses with largest
overlap, where over]ap is measured by weighted-amplitude ideogram defined by

I=Y(Au+ Av)e” 5237 Note that strong peaks are preferred because they are more likely
to be persistent, and therefore their corresponding peaks in the template images are more
likely to be found. Figure 31 shows the initial (translational; § = 0) alignment hypotheses
of two images.

Delaunay walk (Section ) is used to enable efficient searches for corresponding peaks. Note
a?

that peak pairs have to be formed before J = 3= (A + Ay)e %2 can be computed. This is
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done by local searches in the Delaunay triangulations of the test peaks and the template
peaks. The worst case search time is proportional to the diameters of the triangulations.

Figure 31: Initial Alignment Hypotheses

8.2 Refined Alignment

Given the sets Sy = {(uz, uy, Ay)} and Sy = {(vg, vy, Ay)}, 1 is a function of the
transformation T, i.e., I = I(T). The conventional technique for refining alignment is to
shift and rotate Sy = {(vz,vy, 4,)} by a small amount (i.e., sampling) until I(T) reaches a
maximum. Instead of using this computationally expensive brute force search, we adopt a
Newton-Raphson [7] iterative optimization:

VI(T) ~ VI(Tp)+ H(To)- 0T
H(Ty) - 0T
~ H(T)-é6T (15)

Il

where V denotes gradient operator and H is a Hessian matrix. Therefore,

Ty =T — H(T)™ - VI(T) (16)

In iterative form,
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Ty~ T — H(T)™ - VI(T))

In expanded form:
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Figure 32: Refining Alignment Hypothesis

Iterative Newton-Raphson searches yield good results because I1(T) is a well-behaved
function, and our best initial alignment hypothesis is often very close to the maximum.
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The method usually takes 4 to 5 steps to converge. Figure 32 shows a comparison of the
initial and refined alignment. There are also other methods for optimization; see (7] for a
good account of references.
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9. Delaunay Walk

Delaunay triangulation is used heavily as a means for spatial indexing, segmentation,
search, and optimization in our SAR ATR system. In this section, we present an algorithm
(Delaunay walk) for finding the closest point (peak) with Delaunay triangulation. An
immediate application is the association of individual peaks in a test image to peaks in a
model image, where the association is done in the sense of closest point. We also provide a
theorem as the basis for the algorithm in this section.

9.1 Algorithm

This section describes an algorithm for finding the closest point ¢* € Q for a given p by
using Delaunay triangulation.

To find ¢* we start with a randomly sclected point, ¢ € Q, and move to a neighboring
point which is the closest to p among g’s neighbors, defined by D7 (Q). This locally greedy
search process is continued indefinitely until no neighbors of ¢ are closer to p than q. It is
proved (Section ) that ¢* can always be found using this Delaunay walk technique with a
random start, and we call this unique property monotonicity of Delaunay triangulation in
analogous to the role of monotonic functions in optimization problems. The technique is
even more efficient for the problem of finding ¢* € Q for each p € P, assuming P and Q
have the same uniform spatial densities. This increased efficiency is a direct result of using
both Delaunay triangulations, D7 (P) and DT (Q).

Walking on DT7(Q) ...

g. = a random start point € Q;
de = [lp — gcll;
continue = yes;
while (continue == yes)
NB = neighbors(q.);

*

¢ = argmin|lp — q||, ¢ € NB;

d = |lp—gq|;
if (d* < d,)
Ge = q7;
d. = d*;
else
continue = no;
end
end
g =qc




Figure 33 shows an example of Delaunay walk. We initialize gc to g7 and the algorithm
selects the path gz — g — g4 — g5 to reach g5, which is the closest to p;.

Figure 33: A Delaunay Walk Example

Notice that each ¢ must maintain a list of its neighbors in D7 (Q). The set of all neighbor
lists is denoted by NB(Q). Once DT (Q) and NB(Q) are computed, the worst-case search
time is proportional to a diameter of DT (Q). Moreover, except for the first search, the
worst-case search can practically be avoided by using D7 (P) and N B(P). For example, to
find the closest g* € Q for p,, g. can be initialized to gs since p, is a neighbor of p;. In
other words, g. is a point very close to the actual destination ¢*, which is ge in this case.

9.2 Experiments

The following experiments are done with Matlab and C on a Pentium II 300-MHz machine.
Two point sets P and Q are generated randomly with a uniform distribution; P and Q have
the same number of points, i.e., |P| = |Q| = n. We find the closest ¢* € Q for each p € P

with n brute force searches and with n Delaunay walks. The results from both methods are
cross-verified. Note that a random start is used only for the first Delaunay walk (Section ).

Figure 34 shows the result of the first experiment with Matlab. The CPU time for
Delaunay walk includes the time for computing D7 (P), DT (Q), NB(P) and NB(Q). The
efficiency of Delaunay walk is evident with larger point sets.

In some applications [3], the data structures D7 (P), DT (Q), NB(P) and NB(Q) are
computed once and used many times. Therefore, it is appropriate to compare only the
search time of Delaunay walk and brute force search as shown in Figure 35. This
experiment is done in C language to optimize the performance. The plot shows that the
Delaunay walk outperforms brute force search when n is eight or greater.
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Figure 34: Delaunay Walk versus Brute Force Search (Matlab)
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Figure 35: Delaunay Walk versus Brute Force Search (C; Search Time Only)

9.3 Theorem and Proof

In this section we present a theorem as the basis for Delaunay walk. This theorem ensures
¢* to be found using Delaunay walk with a random start. A proof by contradiction is also
provided below.

Theorem:
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Given a finite point set @ C R?% Let DT(Q) denote the Delaunay triangulation of Q and
NB(q) the neighbors of ¢ € Q within D7(Q). Then for p € R?, we have the following
implication:

lg" =Pl < llg—pll.V g € NB(g")
= ¢ =pll<llg—pl.VgeQ (19)
In words, if ¢* is as close 10 p as anv of ¢*’s neighbors, then ¢* is a closest neighbor of p

over the entire set Q.

Proof:
Let Cone(g*) denote the set of all A’s in DT (Q) which have ¢* as one of the vertices:
Cone(q*) = {Nabc € DT(Q): ¢ =a, or ¢ =b, or ¢° = c}.

There are two cases for Cone(g*):
Case 1. ¢* € CH(Q);
Case 2. ¢* ¢ CH(Q), where CH(Q) denotes the convex hull of Q.

Now let’s proceed with an assumption that ¢* is as close to p as any of its neighbors and
3¢ ¢ NB(g") such that [|¢ - pl| < llg" - p|l-

Figure 36: Geometry for the Assumption (Case 1)

Without loss of generality, Figure 36 shows the geometry for the assumption under Case 1.
This is, however, not a valid case because the existence of ¢ contradicts the fact that

q* € CH(Q). To be a valid case, the angle between the two neighboring edges, g*gx(p) and
¢ Gk+1(p) » Must be smaller than 180 degrees.

Figure 37(a) and (b) fall into the category of Case 2, and they all satisfy the constraint
Lq(p)q” Gr+1(p) < 180°. But Figure 37(a) is also not possible because § is inside
DG Grp)Gr+1(p); and g*¢ must be present, which contradicts our assumption, § ¢ N B(g*).

The four points, ¢*, gi(), §. and gr41(p), form a convex quadrilateral in Figure 37 (b). There
are two ways to triangulate these four points, as demonstrated in Figure 38(a) and (b). We
show below that the triangulations shown in Figure 38(a) do not make a legal Delaunay
triangulation, and the proof is completed since 38(b) contradicts the assumption,

q ¢ NB(g").
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Figure 39: Geometry of the Proof

Figure 39(a) shows the geometry of the problem. C} is the circle determined by ¢* and p,
and C} is the circle determined by ¢*, gk(p). and gx.1(). Note that points gr(p), and gxi1(p)
are outside C1 by the assumption. If C; and C, intersect only at ¢*, then C; is completely
inside Cy. If C; and C; intersect at two points, ¢* and r, then the hatched region in Figure
39(b) is inside Cs.

The above statement may be trivial. But in order to be more rigorous, we can use Thales’
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theorem [8] to prove this is indeed the case. Because C; and C, share the same cord T¢*,
and gy11(p) is outside Cy, by Thales’ theorem we have

[r8q* > [rgrpd’ = Lrtq*, ¥(s € C1,t € Cy) on the lower side (the side containing p) of
7q*. Therefore, the hatched region, is inside C,. Since our § is always in the hatched
region, which is completely inside Co, Gr(p)Gr+1(p) 18 an illegal edge because the circle Cj is
not site-free [8]. Furthermore, because ¢”, gx(), . and gx41(p) form a convex quadrilateral,
exactly one of Gr(p)dk+1(p) and ¢*q is legal in general situations, i.e., when the four points
are not on a common circle [8]. In conclusion, Figure 38(a) is not possible and ¢*§ must be
present.
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10. Target Matching

We use synthesized intensity images (synthesized from peaks) and a probability matching
metric for both image alignment and target recognition. Our preliminary experiments
achieved good recognition rates for test images with different depression angles.
Recognition of targets with different depression angle and configuration from the training
set is also tested for T72.

10.1 Matching Metrics

Let U, Dy = {(i,§)|Us;; > 0} and V, Dy = {(4,5)|Vi; > 0} be the svnthesized intensity

_ (muij —=p)? +(vuij —v3)?

image of the template and test image respectively. Where Uy; = 3°) Aure 302 ,
i (@i —m) i —vr) )
Vij = L Auke 20% and o ~ 1 pixel.

A natural deterministic matching metric is the Euclidean distance of the two image vectors
in multidimensions:

> (Vij—Uy)? D=DyUDy (20)

(tg)eD

Each pixel intensity difference, V;; — Uj;, is modeled simply as a zero mean Gaussian
random variable with a standard deviation depending on the mean pixel intensity; i.e.,
Xij = ‘/1] - Uij ~ N(0,0’ij), where Oij = O'.LJ(E‘%%‘L) We use a linear model for Oij,

oi; =1" ‘—/’—J—Eyi + €. A normalized measure is Y;; = f»—:]l ~ N(0,1). Therefore, a normalized

distance measure has the following form:

Z }lf D = DV @ DU (21)

2
(ig)eD

Note that /@ jyep Yi2 Of Lijep Yy; is a probability measure because

Pr(distance > /¥ (i jeD YZ) can be used as a matching metric: the larger the probability,
the more likely the match. Ideally, if the template image and the test image come from the
same target, then D ~ Dy and under 1.i.d. assumption 3 (; »ep Ylj will have a Chi-square
distribution with |Dy| (size of Dy) degrees of freedom. In order to take into account the
effect of |Dy/|, the following matching metric is used:

43




1
> (Ziy—1) — Z ~ N(0,1), where Zi; = ng (22)

2/|Du| Gj)ep

Central Limit Theorem is used in Equation (22); it is applicable since |Dy| ~ 500. Note
also that mean(Z;;) = 1 and var(Z;;) = 2.

10.2 Experiments and Results

The target database contains a total of 300 template images; 100 for each of the 3 targets:
BTR70, BMP2, and T72. The template images have a 17-degree depression angle. They
are chosen to span evenly the 0 to 360 degrees target orientation range. For each test
image, we perform peak detection, segmentation, and leading surface estimation, in that
order. Only the test images with correctly estimated orientation (i.e., error 10 degrees) are
used in the recognition experiments.

Estimated target orientation, a, of the test image is used to select N images (from each
target class) that have the closest orientation to a as hypotheses. N images (from each
target class) that have the closest orientation to o & 180° are also selected as 180-degree
alternative hypotheses. Alternative hypotheses are needed because leading surfaces only
determine target orientation up to a 180-degree flip. Expression (22) is a measure of
matching disparity. The hypothesis that has the lowest matching disparity determines the
class name and orientation of the test target. Note that N=3 is used in our experiments.

Expression (22) in is not only used as a target matching metric, but also as an image
alignment metric. In other words, expression (22) is optimized for a given image pair
during the process of image alignment. The metric is a function of the transformation T;
therefore, the aligning method in Section is applicable here. However, aligning with
expression (22) is computationally more expensive compared to aligning with ideogram.

The confusion matrix for test images with depression angle = 17 degrees is shown in Table
9. For the BTR70, there is a total of 118 test images; 116 of them are correctly recognized
as BTR70, and 2 of them are recognized as 180-degree alternative BTR70 (i.e., wrong
pose). Figure 40 shows the matching disparities of the hypotheses as a function of target
orientation. The disparity of the BTR70 hypothesis is used as a reference. The overall
recognition rate for the three targets is 98.9 percent. Table 10 shows the confusion matrix
for test images with depression angle = 15 degrees. The overall recognition rate for the
three targets is 95.8 percent.
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Table 9: Test Depression Angle = 17°
BTR70 | BMP2 | T72
BTR70 (98.3%) || 116/2 0/0 0/0
BMP2 (98.4%) 1/1 121/0 | 0/0
T72 (100%) 0/0 0/0 |116/0

Table 10: Test Depression Angle = 15°
BTR70 | BMP2 | T72
BTR70 (95.2%) || 178/9 0/0 0/0
BMP2 (96.2%) 1/0 78/3 | 3/0
T72 (96.1%) 0/0 5/0 | 171/2

BTR70 0:BMP2 x:T72 s:Alt-BTR70 d:Alt-BMP2 v:Alt-T72
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Figure 40: Matching Disparities
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List of Acronyms
ACRONYM DESCRIPTION

ATR
edgels
EOCs
ISAR
LLS
SLS
MSTAR
ROI
SAR

Automatic target recognition

Edge elements

Extended operating conditions

Inverse synthetic aperture radar

Longer leading surface

Shorter leading surface

Moving and stationary target acquisition and recognition
Region of interest

Synthetic aperture radar




